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A three-dimensional asymptotic analysis of the oscillations of electrically charged 
drops in an external electric field is carried out by means of the multiple-parameter 
perturbation method. The mathematical framework allows separate treatments of 
the quiescent deformation due to the electric field and the oscillatory motions caused 
by other physical factors. Without oscillations, the solution for the quiescent drop 
shape exhibits a prolate deformation with a slight asymmetry about the drop's 
equatorial plane. This axisymmetric quiescent deformation of the equilibrium drop 
shape is shown to modify the oscillation characteristics of axisymmetric as well as 
asymmetric modes. The expression of the characteristic frequency modification is 
derived for the oscillation modes, manifesting fine structure in the frequency 
spectrum so the degeneracy of Rayleigh's normal modes for charged drops is 
removed in the presence of an electric field. Physical reasoning indicates that  the 
degeneracy of the oscillation modes is associated with the spherical symmetry of the 
system, so the removal of the degeneracy may be regarded as a consequence of the 
symmetry breaking caused by the electric field. I n  addition, the small-amplitude 
oscillation mode shapes are also modified as a result of the coupling between the 
oscillatory motions and the electric field as well as the quiescent deformation. 

1. Introduction 
An electrically charged conducting drop tends to be spherical due to the action of 

a uniform surface tension. Rayleigh (1882) first calculated the characteristic 
frequencies for small-amplitude oscillations of a charged drop about the spherical 
equilibrium shape and established from an energy stability analysis the amount of 
charge necessary to induce disruption of the drop surface. According to Rayleigh's 
analysis, we see that for the drop shape perturbation of each normal mode written 
in terms of the spherical harmonics Y, , (O ,  q5) (see Appendix A) of the form 

ei"z"&(B, q5) ( - I  < k < I ) ,  

the square of the characteristic frequency is determined as 

where R is the radius of a sphere having the same volume as the drop, p the density, 
the uniform surface tension, &* the total charge on the drop and em the 

permittivity of the insulating medium surrounding the drop. (The asterisked 

f Also affiliated with Cloud and Precipitation Research, Illinois State Water Survey. 
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variables denote dimensional quantities hereafter.) Equation (1.1) indicates that qk 
is independent of k, suggesting that there is a 2E-k 1 spatial degeneracy associated 
with one characteristic frequency for the oscillations of a charged drop with the 
spherically symmetric equilibrium shape, i.e. all normal modes of the spherical 
harmonics of the same degree 1 with different rank Ic have the same characteristic 
frequency. Thus, in a spherical coordinate system with 8 and 4 denoting the 
meridional and azimuthal angles, the asymmetric modes (k =I= 0) have the same 
characteristic frequencies as the axisymmetric modes (k = 0) of the same 1. That is 
why the abbreviation w1 is usually seen in the literature rather than the notation wlk.  
Intuitively, these sorts of mode degeneracies may be considered as a result of the 
spherical symmetry of the equilibrium shape about which the oscillatory motions are 
taking place, because there is no physically preferential direction in defining 8 and 
4 in a spherically symmetric system. 

When an electrostatic field is applied, however, a non-uniform electric stress 
distribution will elongate the drop surface in the direction of the electric field, so the 
equilibrium drop shape becomes approximately prolate (Taylor 1964 ; Brazier-Smith 
et al. 1971). Moreover, as a charged drop is levitated by applying an electrostatic field 
parallel to the direction of gravity, the presence of gravity and net electric charge will 
also destroy the mirror symmetry about the drop’s equatorial plane because of the 
different local hydrostatic pressure and charge concentrations on the upper and 
lower surfaces (Adornato & Brown 1983). A recent study of axisymmetric drop 
oscillations (Feng & Beard 1990) reveals some modifications in characteristic 
frequencies and mode shapes of such electrostatically levitated drops. I n  this paper, 
we present generalized three-dimensional features of those modifications for the 
oscillation characteristics of electrostatically deformed drops. 

The behaviour of electrified drops is of interest in a variety of applications and is 
of fundamental scientific significance. For example, electrostatic levitators have been 
used to investigate physical properties and size distributions of aerosol particles 
(O’Konski & Thacher 1953; Davis & Ray 1980). In  thunderstorm clouds, natural 
raindrops are subject to external electric stresses and might also be electrostatically 
levitated (Pruppacher & Klett 1978; Beard, Feng & Chuang 1989). The oscillation 
frequencies and mode shapes of such strongly electrified drops can affect the radar 
return signal and thereby be of use in determining drop-size distributions (Rogers 
1984). Also, use of electrostatic levitators has been proposed in the containerless 
processing of materials such as semi-conductor melts (Carruthers 1974). 

Most published works about electrified drops treat charge and external electric 
field effects separately. In  the absence of an external electric field, the equilibrium 
shape of a charged drop is spherical which greatly simplifies the mathematical 
treatment. As a consequence, the dynamics and instability ofa  charged drop without 
any external fields have been studied extensively (Tsamopoulos & Brown 1984; 
Tsamopoulos, Akylas & Brown 1985; Natarajan & Brown 1987~) .  Studies of the 
oscillation behaviour of an uncharged drop in an electric field have been mainly 
based on simplified models by assuming spheroidal deformations (Rosenkilde 1969 ; 
Brazier-Smith et al. 1971). In  the presence of both electric charge and external field, 
the drop encounters a net electric force. This net electric force may cause the drop 
to accelerate or be balanced by some other forces such as the hydrostatic pressure 
arising from gravity, dynamic drag if the drop is moving in another fluid, etc. For 
the sake of performing closed-form mathematical analysis without losing the basic 
features of electrified drops, it seems to be simplest to use the model of 
electrostatically levitated drops in which an overall force balance is achieved as the 
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hydrostatic pressure offsets the net electric force (Adornato & Brown 1983 ; Feng & 
Beard 1990). Another reason for using the present model is that a comparison can be 
realized between the theoretical results and experimental observations from 
electrostatic levitators already in use (e.g. Rhim et al. 1987). 

In general, the problem of motions in an electrified drop is a complicated free- 
boundary problem even if the assumptions of inviscid flow and a conducting fluid are 
used, because of nonlinearities arising from inertia, capillarity and the coupling of the 
surface kinematics to the velocity field, and also the coupling of the electric field to 
the changing drop shape. In order to make the problem analytically tractable, an 
asymptotic approach is used based on the assumptions of both small quiescent 
deformation in the equilibrium shape and small amplitude of oscillatory motions. 
Since the quiescent deformation and oscillatory motions are caused by essentially 
independent physical factors, it is appropriate to involve two small parameters in 
carrying out the asymptotic expansion about a spherical domain. The previous 
studies of axisymmetric oscillations of uncharged drops in an electric field (Feng 
1990) and of electrostatically levitate drops (Feng & Beard 1990) have already 
demonstrated the usefulness of the multiple-parameter perturbation technique. Its 
employment in the present analysis of the more intricate three-dimensional dynamics 
of electrostatically deformed drops is very helpful in delineating causative roles 
played by different physical factors in drop behaviour. 

2. Problem formulation 
In this paper, we consider the irrotational, incompressible motion of an electrically 

conducting drop in a tenuous insulating medium subjected to an externally applied 
electrostatic field q. Under the assumption of electrostatic levitation, the external 
electrostatic field is placed parallel to the direction of gravity. The mathematical 
problem is made dimensionless in the same way as that employed in our previous 
work (Feng & Beard 1990) by scaling the radial coordinate (ro)  with R ,  time ( t )  with 
(pB3/a)i ,  velocity potential (@) with (aR/p)i,  as well as stress terms such as pressure 
and electric stress with a/R. The dimensionless surface of the drop is described by 
ro = F ( 0 , $ ,  t ) ,  where 0 is the meridional angle measured from the axis parallel to the 
direction of the external electric field and 4 is the corresponding azimuthal angle in 
spherical coordinates. 

Thus, the velocity potential is governed by the Laplace equation 

V2@ = 0 (0 < ro < F ( 0 ,  #, t ) ) .  (2.1) 

The 

The 

and 

condition for a finite radial velocity 

-*a 

kinematic condition and the normal 

a@ 
ar0 

at the centre of the drop is 

(ro = 0). (2.2) 

stress balance at the drop surface are 
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where V ,  in the term V ,  - n is a surface gradient operator defined in the plane locally 
tangent to the drop surface (Weatherburn 1927). The unit normal vector of the 
surface n is given by 

The Bond number is defined as B o = p g R 2 / a  with g denoting the acceleration of 
gravity. The term NE is the dimensionless counterpart of the electric stress of the 
form (Landau & Lifshitz 1959), where em is the permittivity of the medium 
surrounding the drop in SI units. If the electric potential ( V )  is scaled with (aR/a,)i, 
electric field (E  = - V V )  with [ a / (R4] ;  and net electric charge ( Q )  with (e,crR3)i, 
the equation governing the electric potential around a conducting drop is Laplace 
equation 

(2.6) 

The far-field condition of uniform electric field along the vertical axis is written as 

V2V = 0 (F(0 ,  q5, t )  < ro < a). 

V = -EorocosO ( ro+co).  (2.7) 

The continuity of the tangential component of the electric field across the interface 
is guaranteed by 

The conservation of electric charge in a conducting drop requires 

n x V V  = 0 (To = F(B,q5, t ) ) .  (2.8) 

The electric stress can be written in terms of the electric potential V as 

(2.10) 

Moreover, the requirement of volume conservation takes the form 

~ ~ F 3 ( 0 , $ , t ) s i n B d B d q 5  = 4n (2.11) 

and the constraint that  the centre of mass of the drop remains a t  the origin is 

JrLF4(0, q5, t )  Y,,(B, q5) sin BdBdq5 = 0. (2.12) 

It might be noted that the condition (2.12) also guarantees an overall force balance 
on the drop. 

3. Perturbation approach 
I n  order to make the complicated free-boundary problem (2.1)-(2.12) mathe- 

matically tractable, the method of multiple-parameter perturbations (Feng 1990) is 
used to account for two independent shape deformation characteristics of oscillating 
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drops with electrostatically deformed equilibrium shapes. Formally, two small 
parameters and c2 are introduced with el = Eo scaling the externally applied 
electrostatic field and e2 scaling the amplitude of the oscillatory motions. Based on 
the assumption of a nearly spherical drop shape, the expansion of the domain shape 
is implemented by transforming the complex configuration of the drop shape to  the 
unit sphere using the change of coordinates ro = rF(B, q5, t )  (cf. Joseph 1967, 1973; 
Tsamopoulos & Brown 1983) and expanding each dependent variable in a Taylor 
series. Thus, the nonlinear mathematical problem is transformed into a sequence of 
linear, inhomogeneous problems a t  each order of el and E~ for 

where f ( r ,B ,q5 , t ; c1 ,E2)  stands for @, V , F ,  etc. (Feng & Beard 1990). Since the 
expansions of the governing field equations (2.1) and (2.6) lead to 

V2@("sm) = 0 (0 < r < 1) and V2V(n,m) = 0 (1 < r < ao), (3.2) 

the solutions for the velocity and electric potentials satisfying the natural boundary 
conditions (2.2) and (2.7) may be written as 

where Y,,(B, q5) are the spherical harmonics of the form defined in Appendix A and 
S,, denotes the Kronecker delta. For convenience, it is also natural to have the shape 
function expanded in terms of the spherical harmonics 

(3.4) 

The solution of the equations governing the zeroth-order problem is the base state 

- 1  
0 

4xr 
g 

. o  

, (3.5) 

which, since el = e2 = 0, describes an  isolated, static spherical drop bearing net 
charge Q .  

Furthermore, to account for the nonlinear dependence of the oscillation frequencies 
on the deformation amplitudes, a method of multiple timescales is also employed. 
Formally, the different timescales are introduced into the dynamic equations by 
expanding the partial derivative with respect to time t as 

1 m m  1 

where the timescales T(,,m, are assumed to  be related to the actual time as T(n,m) = 
€ ; E r t .  
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4. Quiescent drop shapes 
Under the influence of an external electric field, the quiescent drop shape is 

described by the perturbation solutions when the amplitude of oscillatory motions is 
set to zero ( E ,  = 0). Details discussion of the physical mechanism in quiescent 
deformations can be found in our previous work (Feng & Beard 1990). Hence, only 
the solution forms written in the notation used in this paper are listed here. 

The equations governing the O ( E ~ )  problem yield the results 

which describe a charged conducting sphere levitated by an externally applied 
uniform electric field. The overall electric force exactly balances the weight of the 
sphere, as indicated by the relation Bo(’*O> = 3Q/(4x). There is no drop deformation 
at  this order of expansion. 

Carrying out the calculations to the O ( B ~ )  problem leads to 

where 

(4.3) 

in which Qhl) denotes the dimensionless form of Rayleigh’s critical values of charge. 
At this level of expansion, the quiescent electrostatical deformation occurs 

approximately as a prolate spheroid with its major axis along the direction of the 
applied electric field. As shown in previous works (Adornato & Brown 1983 ; Feng & 
Beard 1990), there will appear a third Legendre function in the solution to the O(s:) 
problem, indicating that the mirror symmetry of the interface about its equatorial 
plane is also broken. The quiescent deformation is enhanced as the amount of net 
charge Q increases, because of the overwhelming effect of the diminished 
denominators of a$;.0) and u $ ~ ~ ) .  However, in the absence of the net electric charge 
Q ,  the governing equations for the O(B:) problem render the solutions trivial, i.e. 
a$$o) = 0. For the uncharged drop shape further corrections to the above well-known 
results should be sought from the O(E:) problem which admit the non-zero coefficients 
for the shape function 

The results of (4.2) and (4.4) yield an expression for the equilibrium shape of an 
uncharged drop in an electric field 

F z l-~;l-+€; 9 (3 -+-E; 711 )(447 
80 4 560 (4.5) 
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Actually, the electric field effects on the shape of an uncharged drop were 
calculated by Taylor (1964) using the spheroidal approximation. His results may be 
written as 

where e2 denotes the eccentricity of the spheroid. From Taylor's derivation we can 
obtain the approximate relation 

9 837 
4 640 

e2 x -e:+-e:. (4.7) 

Substitution of (4.7) into (4.6) gives the spheroidal result for the shape of an 
uncharged drop in an electric field 

The comparison of (4.5) and (4.8) shows that to O(E;)  the perturbation and spheroidal 
models agree perfectly, whereas to O(e;) there is only a slight difference between the 
two. 

5. Oscillatory motions about the quiescent shape 
In this section, we solve the problem of small-amplitude oscillations (first order in 

e2) about the equilibrium shape obtained in $4 up to the order of e:. Solutions to 
higher-order problems are quite formidable, in spite of the fact that the method of 
multiple-parameter perturbations provides a systematic way to proceed to any 
desired order in el and e2. 

For the O(e2) problem, the kinematic condition and the equation of continuity of 
the tangential electric field lead to 

Substituting (5.1) into the equation of the normal stress balance leads to a linear 
oscillator equation for the shape function coefficients a@ l) 

Thus the solution for the shape function coefficients is found as 

(5.3) = (0,1) 
cZk exp LiWlk q 0 ,  O)], 

where c$l) can be a function of slower timescales such as q,,,,, qo,l), T&,,, q,,,), 
..., and 

OFk = l ( l - l ) ( l + 2 )  1 -  - [ (lJ1 (5.4) 

for 1 = 2, 3,  4, ..., corresponding to the linear modes of oscillation analysed by 
Rayleigh (1882). The modes l = 0 and 1 = 1 are not included in order to satisfy 
volume conservation and the condition of fixed centre of mass. 
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The equation of the normal stress balance also yields 

(5 .5)  

It is anticipated that if we were carrying out the higher-order expansions in powers 
of ez, the axisymmetric results of Tsamopoulos & Brown (1984) would be recovered 
for the nonlinear resonant oscillations of inviscid charged drops. 

The interactions between the oscillatory motion and the external electric field may 
appear in the O(elez) problem solved as follows. By combining the kinematic 
condition, the equation of continuity of the tangential electric field and the equation 
of normal stress balance, we obtain an inhomogeneous equation for the shape 
function coefficients 

ArpP91) = Bo(Os1) = 0, 

with the expressions for JPl(Z, k) and J+l(Z, k) given in Appendix B. The solvability 
condition, which requires elimination of the secular term in (5.6), leads to 

indicating that there is no frequency modification a t  this level of approximation. 
Thus the shape coefficients are of the form 

"$.1> = A<'* -1 1) (I, k ;  &) a$!!itk +Ayi ') (1, k ;  Q )  (1 2 2)9 (5.8) 

with 
3Q Z(Z-2) J+l(Z-  1, k) 

ALyl)(Z, k ;  Q )  = - 
2~ (2-1) (3Z+2-Q2/8n2)'  

3& (1 - 1) JP1(l + 1 ,  k) 
2~ ( 3 Z + 5 - Q 2 / 8 ~ 2 )  ' 

At'; ')(Z, k ;  Q )  = -- 

As discussed in Nayfeh & Mook (1979), the solution to the homogeneous part of (5.6) 
need not be included because i t  can always be absorbed in the linear modes (5 .3) .  

From the known shape function coefficients and the kinematic condition as well as 
the equation of continuity of the tangential electric field, the coefficients for the 
velocity and electric potentials can be readily determined through the relations 

and 

HLy ')(Z, k ;  Q )  = --A?\ Q "(Z, k ; Q) + 3J+,(Z- 1 ,  k ) ,  where 4n 

H$y')(Z,k;Q) = --A~y1)(Z,k;Q)+3JP,(Z+1, Q k ) .  
4K 

At this order of expansion, the modifications to  oscillatory mode shapes result 
from the non-zero Bond number as well as the combination of the external electric 
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field and the net electric charge, although the equilibrium shape of the drop still 
exhibits spherical symmetry. Such a phenomenon may be explained as a locally 
unbalanced electric stress and hydrostatic pressure a t  the drop surface when it is 
deformed from the equilibrium spherical shape as oscillatory motions take place. 

Furthermore, to satisfy volume conservation and the condition of fixed centre of 
mass as well as the equation of normal stress balance we should have 

a(1.1) 00 = %k (191) = A Po (1.1) = Bo<lvl> = 0. (5.11) 

In order to  obtain the first frequency modification, we must extend the analysis to 
the O(eqe2) problem. From the equation of conservation of electric charge and the 
condition of continuity of the tangential electric field on the drop surface we get 

and 
ti;." = 0 

($:.1> = Q -a.i*l)+H(Z-l)(z - 2  3 k . Q )  OLl-2.k (0,1) +H(231) (1, k ; & ) a , ( , O . ' ) + H $ ~ ' ) ( Z , k ; & ) a $ ~ j l > ,  
4n: 

( I  2 11, (5.12) 

with the expressions for H9j  ')(Z, k ;  Q ) ,  Hi2q1)(Z, k ;  Q )  and H$?l)(Z, k ;  &) given in 
Appendix C. The kinematic condition leads to 

with the expressions for B<;l)(Z, k ;  Q), Bi2*l)(Z, k ;  Q )  and Bi2; l)(Z, k ;  &) also in Appendix 
C. Making use of (5.12) and the equation for the normal stress balance yields 

0 0 1  +c c [Cl~1)(Z,k;&)a~!!;t>,+C$2,1)(Z, k;&)a$i*')+C$%')(Z, k;Q)a$&t>,] K k .  (5.14) 

where C?$')(Z, k ;  &), Ci2v1)(Z, k;&) and C<,2;')(Z, k ; & )  are explicitly written out in 
Appendix C. Thus by eliminating / 3 $ ; p 1 )  from (5.13) and (5.14), we obtain an equation 
for the coefficients of the shape function 

1-0 k--1 

(5.15) 
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l\k 0 1 2 3 4 
- - 2 1.382 0.916 - 0.482 

3 0.979 0.814 0.321 -0.500 
4 0.810 0.721 0.479 0.0666 -0.51 1 

- 

TABLE 1. Values of A$2a1)(Z, k ;  Q)/(4w3 for Q = 0 with various 1 and k 

where 

A$')(Z,k;&) = ZC$')(Z,k;Q)-(Z+l)(Z+2) Z+4- - B$?i''(Z,k;Q). i (:)PI 
The solvability condition for (5.15) requires that 

Hence at this level of approximation we find 

(5.16) 

(5.17) 

where 
the characteristic frequencies are modified as 

') could be functions of slower timescales Tco, '), T(', T(2, '), . . . . As a result, 

(5.18) 

with wlk being the linear normal mode frequency given by (5.4). For convenient 
reference, some typical values of the frequency modification factor in (5.18) for Q = 0 
are listed in table 1 .  Since the value of A$2v1)(Z, 1; Q )  depends on both Z and k ,  finer 
structure of the characteristic frequency spectrum can be calculated in the O(et c2) 
problem. 

Shown in figure 1 is the normalized frequency 1 - [A$2* ')(Z, k ;  Q) / (4wik ) ]  e; as a 
function of the dimensionless electric field strength Eo = el when Q = 0 for the zonal 
harmonics (axisymmetric modes k = 0) and the sectoral harmonics (lkl = 1). It is seen 
that as the external electric field strength increases, all frequencies for the 
axisymmetric modes are lowered, whereas all sectoral harmonic frequencies are 
increased. Whether the frequency of a particular mode increases or decreases in the 
presence of the electric field depends on several factors. The first frequency 
modification is related to the square of el in (5.18)) thus suggesting that the quiescent 
electrostatic deformation, which also first appears a t  the level of el, could be major 
cause of the frequency shifts. 

From a geometric point of view, the corresponding wavelengths for the zonal 
harmonics are intimately related to the distance between the upper and lower poles 
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FIGURE 1 .  The normalized characteristic frequency 1 - [A!2s1)(2, k ;  &)/(40fk)] Ei of a conducting 
drop in an electric field with zero net electric charge Q as a function of the dimensionless electric 
field strength E,  = el for the zonal and sectoral harmonics. 

along a meridian. Physically speaking, increasing the zonal harmonics wavelengths 
in a prolate spheroid tends to lower the corresponding frequencies. Likewise, the 
wavelengths for the sectoral harmonics are determined mainly by the size of the 
equatorial circle, which is contracted for a prolate electrostatical drop so the 
corresponding frequencies tend to increase. Although the physical problem studied 
here differs from that of a drop trapped in standing acoustic waves, the geometric 
consideration in the present analysis seems to be also useful in the explanation of the 
opposite frequency shifts for axisymmetric drop oscillations when the acoustic 
driving mode is chosen to be prolate- and oblate-biased (Trinh & Wang 1982). Since 
the geometric wavelengths for the axisymmetric modes (zonal harmonics) are 
increased in the prolate-biased drops and decreased in the oblate-biased drops, the 
corresponding characteristic frequencies should become lower for the former case and 
higher for the latter case, just as reported by Trinh & Wang for experimental 
observations of a drop in an acoustic field when it is trapped at  a stable position and 
driven into oscillation with deformed equilibrium shape. 

In addition to the geometric effects mentioned above, there is another factor that 
also obviously affects the characteristic frequencies, viz. a net reduction in the 
surface restoring force. This is evident from (4.2) which indicates a quiescent decrease 
in the uniform pressure difference across the interface (Api2'O) =-3) .  Such a 
softening effect due to the quiescent deformation attempts to cause all characteristic 
frequencies to decrease. That might be why the net increase of the sectoral harmonic 
frequencies is relatively insignificant in comparison with the decrease of the zonal 
harmonic ones. 
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FIGURE 2. The normalized frequencies for two-lobed oscillations (I = 2) for the cases 
Q = 0 (solid curves) and Q = 10 (dashed curves). 

Figures 2, 3 and 4 show the effects of electric charge on the normalized frequency 
curves for the two-, three- and four-lobed oscillations respectively, with the solid 
curves for Q = 0 and the dashed curves for Q = 10. The frequency shifts for the case 
of Q = 0 obtained here for the two-lobed oscillation modes are in general agreement 
with those of Rosenkilde (1969) who conducted the calculation based on the 
assumption of spheroidal drop shapes. It is obvious that the net electric charge 
enhances the frequency shifts for all modes, since it exaggerates the quiescent 
deformation. The frequency shift enhancements due to the net electric charge, 
however, differ for the modes of different degree (1) and different rank (k), as can be 
seen from figure 2 , 3  and 4 when the relative difference between the dashed and solid 
curves for each mode is compared with others. 

According to (5.15), the mode shape modifications at  this order of expansion can 
be expressed in the form 

( I  =I= 0). (5.19) 

Since AL$l)(l, k ; Q )  and A$?jl)(l, k ; Q )  in (5.19) do not become zero when Q = 0,  the 
mode shape modifications are present even in the absence of net electric charge and 
gravity, in contrast to  the O(el e2) solution. The modification to the shape function 
in the O(ei e,) solution is caused mostly by the direct coupling between the oscillatory 
motions and quiescent electrostatic deformation calculated in the O ( E ~ )  problem, 
which can exist in the absence of net electric charge Q. There is, however, one thing 
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Electric field strength 

FIGURE 3. The normalized frequencies for three-lobed oscillations (2  = 3) for the cases 
Q = 0 (solid curves) and Q = 10 (dashed curves). 

t 

0.90 t 
0.85 

0 0.1 0.2 0.3 0.4 

Electric field strength 

FIGURE 4. The normalized frequencies for four-lobed oscillations (2  = 4) for the cases 
Q = 0 (solid curves) and Q = 10 (dashed curves). 
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1 4 
FIQURE 5. Axisymmetric shapes of drop oscillations for c2 = ci, el = 0.353 and Q = 10. The solid 
line represents the quiescent drop shape a t  t = +To, the dashed line a t  t = 0, and the dotted line at 
t = ;To, with To being the period of the oscillation mode of degree 1 and rank k = 0. 

in common in both (5.8) and (5.19) for the modifications in the oscillation mode 
shapes; namely there are no modifications in the mode rank (k). This is due to the 
fact that for each mode the modification uncovered here arises from the coupling 
between the oscillatory motion and gravity, electric fields and the subsequent 
quiescent deformation, where the quiescent partners are essentially axisymmetric. 
Hence, the axisymmetry of the zonal modes is not affected by the shape 
modifications. 

For convenience of illustration, only axisymmetric drop shapes are shown in figure 
5 for various oscillatory zonal modes. In order to keep a consistent truncation error 
for the shape function, a scale relation c2 = E: is used and we retain only the terms 
up to O(c:) in the shape function. For each mode, I C $ ; * ~ ) ~  = 1 is assumed and the 
parameters are set to c1 = 0.353 and Q = 10 which simulates a water drop of 2.5 mm 
radius electrostatically levitated in air a t  the earth's surface. Even when the 
deformations are not very large, the asymmetric aspect with respect to the equatorial 
plane can be recognized from figure 5. 
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6. Concluding remarks 
By means of the multiple-parameter perturbation method, fine structure in the 

characteristic frequency spectrum of the oscillations of electrostatically deformed 
drops is uncovered through a three-dimensional asymptotic analysis. In  the presence 
of an external electric field, the characteristic frequencies for the modes of the same 
degree ( I )  bu t  different rank (k) diverge so the mode degeneracy in Rayleigh’s normal 
modes is removed. This phenomenon may provide some general insight into thc 
relationship of the degenerate characteristics and the symmetries in physical 
systems. In  the present problem, the degeneracy of the oscillation modes is 
associated with the spherical symmetry of the system where no physical differences 
can be identified by choosing different coordinate directions. Once this symmetry is 
destroyed by an external electric field, which obviously gives rise to a specific 
direction for the system, fine structure in the frequency spectrum emerges whereby 
the degeneracy disappears. This is similar to  the well-known Zeeman effect in 
quantum mechanics, for which the fine structure in the energy spectrum of hydrogen 
atoms arises from an external magnetic field that breaks the spherical symmetry. 

For the case of drop oscillations, physical considerations suggest that  the changes 
in the geometric lengths of the pole-to-pole meridian and equatorial circle for a 
prolate electrostatical drop shape are mainly responsible for the lowering of the zonal 
harmonic frequency and the increase in the sectoral harmonic frequency. Since the 
mode frequencies of tesseral harmonics are influenced by both the pole-to-pole 
meridian and the equatorial circle with the significance of each effect depending on 
the rank of the spherical harmonics k, the mode frequencies associated with 0 c k < 
1 lie between those for the zonal and sectoral harmonics. In the presence of net 
elcctric charge, the Coulomb repulsion will enhance the quiescent deformation in the 
equilibrium shape so the frequency shifts become more pronounced. However, the 
nct electric charge seems to  affect the frequency shifts differently for the modes of 
sphcrical harmonics with different degree 1 and different rank k. 

Although the quiesccnt deformation of the drop shape is axisymmetric, it affects 
the oscillation Characteristics of both axisymmetric and asymmetric modes and also 
gives rise to the mode shape modifications. With a net electric charge, the oscillation 
modc shape modifications can appear in the O ( E ~ E ~ )  problem due to the locally 
unbalanced electric stress and hydrostatic pressure a t  the drop surface, even though 
at that level of approximation the equilibrium shape is still spherical and there are 
no frequency modifications. In  the O ( E ~ E ~ )  problem, however, the mode shape 
modifications are present even without a net electric charge, because of the quiescent 
deformation. Corresponding to one characteristic frequency, the oscillation mode 
consists of spherical harmonics of different degrees ( I )  but with the same rank (k) in 
addition to the major component described by Rayleigh’s normal mode. The absence 
of the modifications of the mode rank (k) in (5.8) and (5.19) is a result of the current 
level of approximations where we have considered only the coupling between the 
oscillation modes and the quiescent fields such as gravity, external electric field and 
the subsequent quiescent deformation which are all axisymmetric in nature. 

Following the procedure of multiple-parameter perturbations, a further analysis of 
the effects of the quiescent deformation on the nonlinear resonances seems 
straightforward. It is, however, beyond the present scope in view of the tedious 
algebra involved in such a large set of interaction equations. The three-dimensional 
analysis of nonlinear resonances for a drop free from external fields (Natarajan & 
Brown 1987b) shows that the oscillation mode degeneracy appearing in the small- 
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amplitude (O(s,) solution) plays an important role in causing long-timescale dynamics 
which may display stochastic behaviour. Without carrying out rigorous calculations 
for higher-order problems, some general conclusions may be drawn from the present 
results about the role played by an external field in nonlinear drop resonances. Since 
the external field tends to destroy the spherical symmetry in the equilibrium drop 
shape and remove the degeneracy in the small-amplitude oscillation modes, its 
presence may hinder the nonlinear interactions among the modes of the same degree 
(1) (or different degree with commensurate Rayleigh frequencies) because the 
frequencies are no longer the same (or no longer exactly commensurate) even when 
the oscillation amplitude is small ; thereby i t  may become more difficult to observe 
the stochastic behaviour of the long-timescale dynamics when the drop is influenced 
by an external field. 
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Appendix A 
The basis functions used in this paper are spherical harmonics defined as 

with Plk(8) being the associated Legendre polynomials written as 

The Kk( 8, $) satisfy the orthogonality conditions 

In[ K,ce, $1 $) sin 8 dad$ = a,,, s,,,, 

where the asterisk denotes the complex conjugate and S,, stands for the Kronecker 
delta. 

Appendix B 
From the well-known properties of the associate Legendre polynomials, some 

recurrence formulae often used in this paper for the spherical harmonics are obtained 
as follows. 

X K k  = J-l(L k) Y L - l , k + J + l ( k  k) K + l , k  

with 

(21+1)(Z+lkl+l) 
(21+3) (Z-Ikl+ 1)  J + , ( E ,  4 = 
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Hence, 

where 
x2&k = 1 - 2 ( l ,  k) &-2,k  +1+2(J9 k) &+2,k + 1 o ( l ,  k) 

( l + ~ k ~ ) ( l + ~ k ~ - l )  ( 2 l + l ) ( Z - ~ k ~ ) ( l - ~ k ~ - l )  i 
(2 l - I ) (2 l+I )  (21-3)(Z+lk()(l+lkl-l) 1 ' 1-2(1, k) = 

212+21-2k2- 1 
(21- 1) (21+3) ' Io(h k) = 

Moreover, we have 

12+l-3k2 
(21-1)(21+3)' 

(z+l)J~l(l,k)J+l(l-l,k)-zJ+l(l,k)J~l(z+l,k) = 

Appendix C 

tangential electric field on the drop surface as 
The coefficients in (5.12) are derived from the condition of continuity of the 

HI$'>(Z,k;Q)  = a$029°>Z1+z(l-2,k), 

Hi2' " ( l ,  k ; Q )  = 6J-,(l + 1, k) A<+ "( l  + 1, k ; &) + 6J+1(1- 1, k) AJ'; " ( l -  1, k ; Q )  

H!2; l ) ( l , k ;Q)  = 6J-1(l+1,k)AJ1;1)(1+1, ~t$;*~)(1+4)1-,(1+2,k), 

with the expressions for L 2 ( l , k ) ,  l o ( l , k )  and I+2( l ,k )  given in Appendix B. The 
coefficients in (5.13) are derived from the kinematic condition as 

B y ) ( l ,  k ;  Q )  = - - a; ,"qz-  1)1+2(1-2, k), 
2 "Ot 4n 
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where the Q dependence comes from the fact that a$iso) is a function of charge Q .  The 
coefficients in (5.14) are derived from the equation for the normal stress balance as 

+(Z-2) (1-3) 1- - 1+2(Z-2, k)+EL?j')(Z, k ; Q ) ,  [ (:Ill 

+Z(Z-l) Z+2- - I0(Z,k)--  + E $ 2 * 1 ) ( Z , k ; Q ) ,  [ (:Ill[ :l 
C$?il)(Z,k;&) = -  "("y - 20 { 2(Z2+5Z+10) 

2 4R 

I-I_,(Z+Z,k)+Et2;''(Z,k;Q), 

with Ei?jl)(Z, k ;  Q ) ,  E$',')(Z, k ;  Q )  and E$')(Z, k ;  Q )  denoting the contribution from 
NE - Bo ro cos 6 : 

EL?j')(Z,k;Q) = - (Z+l)Hi?j ' ) (Z,k;Q) Q 
4R 

5Q ZHL; " ( 1  - 1 ,  k ;  Q )  - ---A57 "(Z- 1,  k ; Q )  
4R 

-{:(z)2 ( ira; i*O)[(Z-  + 8 +2(Z-2)] + 36 } I+2(Z-2, k ) ,  

Q E$2s1)(Z, k ; Q )  = -(Z+l)H$'vl)(Z, k ; Q )  
4R 

1 5Q + 6 J+'( Z - 1, k) ZHt'; ')( Z - 1,  k ; Q ) - --A $?i ') (1 - 1, k ; Q 
4R 

5Q 

[ 
(E+2)H$;')(I+ 1 ,  k ;  Q)--A?i')(Z+ 1 ,  k ;  Q ) ]  

4R 

- ~ ( g ~ ( ~ r a ~ i , o ) [ ( Z +  2 47c 1)'+8] 

Q E$?j " ( 1 ,  k ; Q )  = - (1 + 1 )  H$?; "(Z, k ; Q )  
4R 

1 5Q (Z+ 2) HJ? ')(Z+ 1, k ;, Q )  ---AJ1;')(1+ 1 ,  k ;  &) 
4R 

- { (zr (zr [(I + 3)' + 8 - 2(Z + 3)] + 36 I-2(Z + 2, k ) .  I 
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